

Tetrahedron Letters 41 (2000) 4637-4640

TETRAHEDRON LETTERS

Pummerer-type α -functionalization of arylseleninylacetates by treating with trimethylsilyl- or tri-n-butylstannyl-masked nucleophiles and trifluoroacetic anhydride or a Lewis acid

Kazuaki Shimada,* Yutaka Kikuta, Hiroyuki Koganebuchi, Fumi Yonezawa, Shigenobu Aoyagi and Yuji Takikawa

Department of Applied Chemistry and Molecular Science, Faculty of Engineering, Iwate University, Morioka, Iwate 020-8551, Japan

Received 27 March 2000; accepted 21 April 2000

Abstract

Arylseleninylacetates underwent facile α -functionalization on treatment with trimethylsilyl- or tri-nbutylstannyl-masked nucleophiles and trifluoroacetic anhydride (TFAA) or a Lewis acid. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: selenoxide; Pummerer rearrangement; α -allylation; allyltrimethylsilane; α -azidation.

Recent interest in the field of organic heteroatom chemistry has been concentrated on heteroatomstabilized carbenium ions, and several methods for α -functionalization of alkyl selenides, selenoacetals, a-haloselenides, or alkenyl selenides via chemically- or electrochemically-generated selonium ions A (X=Se) or α -selenocarbenium ions **B** (X=Se) have been reported to date.^{1,2} However, the lability of seleninyl functionalities has caused serious limitation in the synthetic use of selenoxides in spite of their potentiality as synthetic equivalents of A or B (Scheme 1). It was expected that selenoxides $2³$ bearing an alkyl chain on the selenium atom would undergo α -functionalization via A or B that might be generated through a Pummerer-type reaction,⁴ by treating 2 with nucleophilic reagents. In this paper, we would like to describe an α -functionalization of selenoxides 2 by the combined treatment of nucleophiles masked with a trimethylsilyl or a tri-n-butylstannyl group and trifluoroacetic anhydride (TFAA) or a Lewis acid.

A CH₂Cl₂ solution of selenide $1a-b$ was at first treated with mCPBA (1.1 mol amt.) through the usual procedure to give selenoxides $2a-b$ as 1:1 epimeric mixtures.^{3,5} Unexpectedly, treatment of 1c or 1d with mCPBA only gave the recovery of the compounds in almost quantitative yield due to deoxygenation during the usual reductive workup (aq. $Na₂SO₃$ solution), purification, or

^{*} Corresponding author. Tel: +00-81-19-621-6324; fax: +00-81-19-621-6347; e-mail: shimada@iwate- u.ac.jp

Scheme 1.

storage. These results indicated the effective kinetic protection of the seleninyl functionality of 2 by using the neighboring l-menthyloxycarbonyl moiety. Sulfoxides 4a, 4c, and 4d were also prepared by similar treatment of sulfides 3 with mCPBA. Subsequently, when a CH_2Cl_2 solution of 2a or sulfoxides, 4a, 4c, or 4d, were treated with allyltrimethylsilane or allyltri-n-butylstannane (5, 5.0 mol amt.) and TFAA or $BF_3 \cdot OEt_2$ (2.2 mol amt.), inseparable diastereomeric mixtures of α -allylation products, 6a, 8a, 8c, or 8d, respectively, were obtained in modest yields along with 1a or 3 in each case. A similar treatment of 2a with 2-ethoxycarbonylallyltrimethylsilane and $BF_3 \cdot OEt_2$ also afforded 7a predominantly. However, the use of acetic anhydride in place of TFAA for the reaction of 2a only gave a diastereomeric mixture (about 1:1) of α -acetoxyselenide 14a in 62% yield. The treatment of 2b with the same reagents or the treatment of 2a with TFAA and an ally silane bearing an ethyl or a phenyl group at the γ -position only gave a complex mixture. These results suggested that the steric factor between the γ -position (R²) of allylsilanes and the α -position of the phenylseleninyl group of 2 might affect the reaction course. In addition, treatment of a CH_2Cl_2 solution of 2a with TFAA in the presence of an additive, such as cyclohexene, phenylacetylene, or anisole, only gave a complex mixture in which no products originated from electrophilic addition of these adducts were found.¹ A similar treatment of 2a or 4c-d with trimethylsilyl azide and TFAA also gave α -azidation products, 12a or 13c-d, respectively. All the results are shown in Tables 1 and 2.

However, one-pot treatment of a CH_2Cl_2 solution of 1a with mCPBA, allyltrimethylsilane, and TFAA only gave a complex mixture containing diphenyl diselenide (9), selenide 1a, allyl phenyl selenide (10) , 1-trimethylsilyl-3-phenylseleno-2-propanol (11) , and several unidentified products. ¹H NMR monitoring of the reaction of a CDCl₃ solution of 1a with mCPBA (1.1 mol amt.) at 27^oC exhibited the formation of a 1:1 diastereomeric mixture of selenurane **X** (δ = 3.83, 3.85, 4.21, and 4.25 ppm for the non-equivalent four protons of the methylene groups of X) at the primary stage.^{4d,6} However, the signals of **X** gradually disappeared within several minutes, and new signals of a diastereomeric mixture of α -acyloxyselenides 15a were observed. Actually, 15a was isolated as a stable compound and was unreactive toward the α -allylation.

Subsequently, when a CDCl₃ solution of $2a$ was treated with TFAA and the reaction was monitored by ¹H NMR at 27°C, the formation of bis(trifluoroacetoxy)selenurane **Y** (δ =4.70 and 4.75 ppm for the non-equivalent geminal protons of the methylene group of Y) was observed at the primary stage.⁶ But, selenurane Y caused facile decomposition within a few minutes into α -trifluoroacetoxyselenide 16a in the CDCl₃ solution. Compound 16a seemed stable enough in the solution but caused facile decomposition to give a complex mixture including 9, 1a, and several unidentified products, during the usual workup and purification. When a $CH₂Cl₂$ solution of 16a,

Table 1

 α -Allylation of selenoxides 2 and sulfoxides 4 by treating with an allylating agent 5 and an electrophilic reagent

^a Isolated yields. ^b An inseparable epimeric mixture (about 1:1). ^c Diphenyl diselenide (9) was obtained in moderate yield. $d \alpha$ -Acetoxyselenide 14a was obtained in 62% yield. ϵ An inseparable epimeric mixture (about 3:2).

Table 2 α -Azidation of selenoxide 2a or sulfoxides 4 by treating with trimethylsilyl azide (5) and TFAA

'Ph RС $2a(X=Se)$ 4 $(X=S)$		$Me3SiN3$ (5) $(5 \text{ mol } \text{amt.})$ Electrophilic Reagent CH ₂ Cl ₂		XPh RO Ν۹ 12a (X=Se, Nu=N ₃) 13 (X=S, Nu=N ₃)	$\,+\,$	XPh RC $1a(X=Se)$ $3(X=S)$
Substrate		Electrophilic	Temp	Time	Yield / $%$ a	
2, 4	X	Reagent	/ °C	/ h	Product	
2a	Se	(CF ₃ CO) ₂ O	-78	3.5	45 $(12a)$ ^b	12 (1a)
4c	S	(CF ₃ CO) ₂ O	0	3	76(13c)	3(3c)
4d	S	(CF ₃ CO) ₂ O	θ	3	86 (13d)	3(3d)

^a Isolated yields. ^b An inseparable epimeric mixture (about 1:1). ^c Diphenyl diselenide (9) was obtained as main byproduct.

prepared preliminarily by adding TFAA (2 mol amt.) to a CH_2Cl_2 solution of 2a, was treated with allyltrimethylsilane (5 mol amt.) at room temperature, only a complex mixture in which allylation products 6a were found in rather low yield was obtained. These results indicated that isolation of selenoxides 2 was essentially required for the α -functionalization and that the reactions might occur only via selonium ions Z (or α -selenocarbenium ions Z') generated through elimination of trifluoroacetic acid and trifluoroacetate ion from $Y^{3,6}$ However, several attempts to detect Z or Z' by NMR measurements were not successful at all.

In conclusion, α -functionalization of selenoxides 2 was achieved by treating with silyl- or stannyl-masked nucleophilic reagents and TFAA or Lewis acid through the route including generation of intermediary selonium ions Z or α -selenocarbenium ions Z' via selenuranes Y. Further attempts for the synthetic applications of these reactions are in progress in our laboratory.

Acknowledgements

This work was financially supported in part by a Grant-in-Aid for Scientific Research (No. 06650995) from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- 1. (a) Renard, M.; Hevesi, L. Tetrahedron Lett. 1983, 24, 3911-3912. (b) Silveira, C. C.; Comasseto, J. V.; Catani, V. Synth. Commun. 1985, 15, 931-937. (c) Hevesi, L. Phosphorus and Sulfur 1988, 38, 191-200. (d) Hevesi, L.; Lavoix, A. Tetrahedron Lett. 1989, 30, 4433-4434. (e) Hermans, B.; Hevesi, L. Tetrahedron Lett. 1990, 31, 4363-4366. (f) Hevesi, L. Bull. Soc. Chim. Fr. 1990, 127, 697-703. (g) Silveira, C. C.; Lenardão, E. J.; Comasseto, J. V.; Dabdoub, M. J. Tetrahedron Lett. 1991, 32, 5741-5744. (h) Hevesi, L. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 67, 155-168. (i) Silveira, C. C.; Araujo, M. A.; Lenardão, E. J.; Braga, A. L.; Dabdoub, M. J. Synthesis 1995, 1305–1310. (j) Hermans, B.; Hevesi, L. J. Org. Chem. 1995, 60, 6141–6147.
- 2. Surowiec, K.; Fuchigami, T. J. Org. Chem. 1992, 57, 5781–5783.
- 3. (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697-2699. (b) Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434–5447. (c) Reich, H. J. Acc. Chem. Res. 1979, 12, 22–30 and references cited therein. (d) Davis, F. A.; Billmers, J. M.; Stringer, O. D. Tetrahedron Lett. 1983, 24, 3191-3194. (e) Kamigata, N. Yuki Gosei Kagaku Kyokaishi 1990, 48, 229-239 and references cited therein. (f) Reich, H. J.; Yelm, K. E. J. Org. Chem. 1991, 56, 5672-5679. (g) Kamigata, N.; Shimizu, T. Reviews on Heteroatom Chemistry 1991, 4, 226-248 and references cited therein. (h) Davis, F. A.; Reddy, R. T. J. Org. Chem. 1992, 57, 2599-2606. (i) Takahashi, T.; Kurose, N.; Kawanami, S.; Arai, Y.; Koizumi, T.; Shiro, M. J. Org. Chem. 1994, 59, 3262-3264. (j) Bosch, E.; Kochi, J. K. J. Chem. Soc., Perkin Trans. 1 1996, 2731-2738. (k) Stuhr-Hansen, N.; Sørensen, H. O.; Henriksen, L.; Larsen, S. Acta Chem. Scand. 1997, 51, 1186-1191. (1) Shimizu, T.; Enomoto, M.; Taka, H.; Kamigata, N. J. Org. Chem. 1999, 64, 8242-8247.
- 4. (a) Sonoda, N.; Miyoshi, N. Tetrahedron Lett. 1977, 851–854. (b) Fujihara, H.; Saito, R.; Yabe, M.; Furukawa, N. Chem. Lett. 1992, 1437-1440. (c) Uneyama, K.; Tokunaga, Y.; Maeda, K. Tetrahedron Lett. 1993, 34, 1311-1312. (d) Löwe, W.; Rütjes, T. J. Heterocycl. Chem. 1995, 32, 43-48.
- 5. Physical data of compounds $1-16$ are available as the supplementary materials.
- 6. (a) Horn, V.; Paetzold, R. Z. Anorg. Allg. Chem. 1973, 398, 186-192. (b) Marino, J. P.; Larsen Jr., R. D. J. Am. Chem. Soc. 1981, 103, 4642–4643. (c) Uemura, S.; Fukuzawa, S. J. Chem. Soc., Perkin Trans. 1 1985, 471–480. (d) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartoli, D. Gazz. Chim. Ital. 1987, 117, 423-427. (e) Kurose, N.; Takahashi, T.; Koizumi, T. Tetrahedron 1997, 53, 12115-12129. (f) Takahashi, T.; Nakano, N.; Koizumi, T. Tetrahedron: Asymmetry 1997, 8, 3293–3308. (g) Zhang, J.; Kurose, N.; Saito, S.; Takahashi, T.; Koizumi, T. Yuki Gosei Kagaku Kyokaishi 1999, 57, 587-597 and references cited therein.

4640